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ABSTRACT 

Understanding stress and strain states in geothermal reservoirs is critical for mitigating induced seismicity and optimizing reservoir 

management, particularly in enhanced geothermal systems (EGS). This study investigates seismicity and subsurface fracture 

characterization at the Cape Modern Geothermal Field, Utah, leveraging a diverse array of seismic sensors, including background 

seismometers, surface nodal networks, and borehole distributed acoustic sensing (DAS). By integrating automatic earthquake detection, 

image processing, and stress drop analysis, we characterize both large and small fracture structures that influence seismic behavior. 

We develop a multi-stage workflow to reconstruct fault surfaces from discrete earthquake hypocenters, employing Gaussian kernel 

transformations, fault orientation scanning, and surface voting methods to enhance structural continuity. Additionally, we estimate 

earthquake stress drops using DAS data to infer small-scale fracture properties and fluid pathways. Our analysis reveals stress drop 

variations between 1–20 MPa and depth-dependent attenuation effects, with implications for seismic hazard assessment and permeability 

evolution. These findings enhance our understanding of the stress state in geothermal reservoirs and provide insights into fault mechanics 

and induced seismicity. 

1. INTRODUCTION AND DATA 

Understanding the detailed stress and strain states in the reservoir and surrounding structure is crucial for mitigating large induced 

seismicity and reservoir management in geothermal fields. This is especially important when we increase the usage of geothermal 

resources and employ enhanced geothermal systems (EGS). We consider that there are two key factors to characterize subsurface stresses; 

densification of seismic monitoring sensors and fracture characterization. We have deployed multiple types of sensors at the Cape Modern 

Geothermal Field, Utah, to monitor seismicity including background seismometers, dense surface nodal network and borehole distributed 

acoustic sensing (DAS). Different types of sensors have their own sensitivities, and using them is important to observe and characterize 

wide aspects of seismicity. Then we apply image processing and earthquake source characterization to identify large- and small-scale 

fractures. 

Six seismic monitoring stations were installed at the Cape Modern site aimed at complementing the extensive, preexisting monitoring 

network of the University of Utah Seismograph Stations, in collaboration with the Utah FORGE site (Figure 1). Five of the sensors are 

installed in shallow (~40 m deep) boreholes, and the other is installed in a ~1 m deep posthole. All six sensors are 3-component, low-

noise optical accelerometers manufactured by Silicon Audio and ASIR Seismic, who package the downhole sondes. They have a nominal 

sensitivity of 60 V/g, a dynamic range of 172 dB, and a passband from 0.005 to 1500 Hz (per manufacturer specifications; Hopp et al., 

2022). Data from these stations are streamed to the EarthScope DMC in real time over the cell network and are archived under the network 

code 6K. 

In addition to the background seismometers, we deploy 500 surface nodal sensors and 480 single-component geophones with real-time 

telemetry system (Figure 1). The surface nodes are SmartSolo IGU-16HR with 5Hz sensors, which is three components with 30 days of 

battery. For most of locations, we deploy two IGUs, and one of them has delayed starting time to reduce the frequency of field work. We 

also deploy borehole DAS in the Cape Delano1OB well and Utah FORGE 16B well. Each cable has approximately 1500 sensors with 2-

m spacing. There is also surface DAS, but we do not use these data for our processing in this study. Both the surface nodes and DAS 

provide continuous seismic data and monitor seismicity seamlessly. 

 

https://www.fdsn.org/networks/detail/6K_2023/
https://www.fdsn.org/networks/detail/6K_2023/
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Figure 1: The site map of the Cape Modern and Utah FORGE geothermal fields at Milford, Utah. The push pins are background 

seismometers and the circular pins indicate the location of surface nodal stations. The white circle is the location of the 

vertical well, which is instrumented by DAS. 

 

2. SEISMICITY 

LBNL has set up an automatic processing system of seismicity using the background seismic network using seiscomp, and then refine the 

automatically processed earthquake catalog using other datasets. The seismic data processing pipeline for the LBNL seiscomp server 

comprises the following parts: 

1. Data telemetry over the cellular network using the RTPD and seedlink protocols 

2. Initial detection is conducted using a short-term average/long-term average (STA/LTA) detection algorithm. The detection 

statistic is calculated on vertical component data bandpass filtered between 3 and 30 Hz with a short-term window of 0.1 seconds 

and a long-term window of 5 seconds. When the short-term/long-term ratio exceeds 3, a detection is triggered. The detection is 

turned off once the ratio falls below 1.5. 

3. Once a detection is triggered, seiscomp launches both a P and S-phase post-picking algorithm to refine the arrival times. Both 

of these algorithms are based on the Akaike Information Criterion (AIC). 

4. All phase picks made by steps 2 and 3 are fed to a phase association algorithm. The phase association is a cluster search based 

on the DBSCAN algorithm whereby P-picks are continually clustered and associated. The clustering metric is the vector sum 

of the time difference between any pair of picks and the travel time between the stations corresponding to these picks (assuming 

some average crustal velocity). Once a cluster of P-picks has been formed, additional picks can be associated to this origin from 

later picks and other origins. 

5. Each final origin created in step 4 is then relocated using a linearized location algorithm with a 1D velocity model tailored to 

the region in which the picks were made. 

6. If an initial location falls within a set of predefined regions (within 25 km of the Cape site, for example), the origin is then 

relocated using the NonLinLoc software package with a 3D velocity model. 

7. Two types of magnitudes are estimated for the Cape site: local magnitude (Ml) and duration magnitude (Md). For each pick 

made, an Ml and Md station magnitude is estimated (Ml being amplitude-based and Md being based on the duration of the event 

waveform). Ml amplitudes are calculated as the absolute maximum amplitude on 3-Hz highpassed horizontal waveforms after 

simulation of a Wood-Anderson response. Md amplitudes are using the parameters estimated for Utah by Pechmann et al., 2006. 

The network magnitude for each type is computed as the average of all station magnitudes, ignoring outliers beyond the upper 

and lower 12.5 percentile. Until December 2024, due to difficulties in processing data across multiple fields with different 

magnitude reporting requirements, we stopped estimating the “summary magnitude”, “M”, which was simply the average of Ml 

and Md network magnitudes. 

An example product of the earthquake catalogs are shown in Figures 2 and 3. 
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Figure 2: Number of earthquakes in each day (midnight-midnight in UTC). The first, third and fourth high volumes of 

earthquakes is related to the Cape Modern stimulation and the second one is to the Utah FORGE. With template matching, 

we detect 8 times more events. The text shows the rough timing of operations. 

 

Figure 3: Seismicity locations (each dot) according to the ground surface (gray) and the top of the granite (blue). The dots are 

colored by the time of events, blue to yellow as February to November, and the left portion (west side) is related to the 

Cape Modern site and the right portion is for Utah FORGE. 

 

3. LARGE FRACTURE CHARACTERIZATION WITH IMAGE PROCESSING 

Understanding fault surfaces and their properties is crucial for seismic hazard assessment and earthquake source physics. However, the 

representation of earthquake hypocenters as scattered points and the discrete nature of seismic data hinders accurate fault surface 

reconstruction. To address these issues, we propose a multi-stage workflow for the reconstruction of fault surfaces from earthquake data 

(Figure 4). Our workflow begins with the transformation of floating, discrete hypocenters into a three-dimensional fault attribute volume. 

This initial step lays the foundation for subsequent analyses and mitigates data representation limitations. 

Then we construct a local isotropic Gaussian kernel to account for the uniform effect of each hypocenter data point in space. Additionally, 

we introduce a local anisotropic Gaussian kernel to enhance constraint on fault surface orientation. Transforming each hypocenter data 

point into a local Gaussian volume result in the creation of an initial fault attribute image. To further enhance the representation of fault 

attributes, we employ the fault orientation scanning method. A local window is established for each grid point, and all possible 
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combinations of strike and dip directions within this window are systematically scanned and summed. The maximum value among these 

directions is selected as the new attribute value for the grid point. This iterative process results in a fault orientation scanning image 

characterized by improved fault attributes. 

While the fault orientation scanning method enhances attribute values, it still lacks high-resolution structural details. To address this 

limitation, we introduce the optimal surface voting method. This technique generates local fault surfaces for grid points with high values 

and accumulates them to produce a more precise voting score image. Leveraging the accurate voting score image, we employ the surface 

growth method to reconstruct the final fault surfaces. This step refines the fault representation, providing a detailed and high-resolution 

view of the fault structures. 

The final step in our workflow involves extracting explicit fault surfaces from the optimal surface voting image. This is accomplished 

through a surface growth method, which initializes surface patches at high-scoring regions, iteratively expands the surfaces by 

incorporating neighboring points with compatible orientations and high attribute values and smooths and refines the final surfaces to 

ensure structural continuity and geological plausibility. This results in a reliable reconstruction of the fault network, capturing both primary 

and subsidiary fault structures with high accuracy. 

In conclusion, by addressing data discreteness and enhancing attribute continuity through various stages of processing, our method 

provides a comprehensive representation of fault structures (Figure 5). This approach holds promise for advancing seismic hazard 

assessment, contributes to a deeper understanding of seismic source physics, and characterizes possible fluid paths in the reservoir. 

 

 

Figure 4: The workflow of image processing for large fracture characterization. Black text indicates the data and blue text the 

processing. 

 

Figure 5: Identified fractures (dark-color planes) and seismicity (light blue dots). 

 



Nakata et al. 

 5 

4. SMALL FRACTURE CHARACTERIZATION WITH EARTHQUAKE STRESS DROP ANALYSIS 

Stress release during an earthquake is proportional to the slip divided by the length scale of the rupture, and hence we can evaluate the 

size of the fractures related to seismicity at geothermal fields, and possibly the change of fluid paths and permeability, via earthquake 

stress drop analysis. It is a basic property of earthquakes fundamental to understanding the physics of the source and its energy budget. 

The stress release also governs the amplitude of ground motions at the frequencies important for strong ground motion prediction and so 

is inherent to seismic hazard analysis. Since the pioneering work of Brune (1970) innumerable studies have attempted to use a relatively 

simple spectral method to estimate the source dimension and stress drop of small and moderate earthquakes in multiple settings (for 

example, Abercrombie 1995, Shearer et al., 2006, Huang et al., 2017, Boyd et al., 2017, and references therein). The goals of such studies 

have been to characterize the source process by estimating the spatial extent of slip and average stress drop. Together with the seismic 

moment, these parameters define the earthquake energy budget (Kanamori and Brodsky, 2004), and also the expected ground motions at 

frequencies of engineering interest (>1 Hz, Cotton et al., 2013, Trugman and Shearer, 2018). Different analyses have focused on 

determining whether earthquake sources are scale invariant (e.g. Abercrombie 1995, Abercombie, 2013; Trugman and Shearer 2017), 

probing the energy budget (e,g. Abercrombie and Rice, 2005) and resolving whether the source process is controlled by factors such as 

temperature, strain rate, depth, or anthropogenic inducing (e.g. Viegas et al., 2010, Allmann and Shearer, 2007; Sumy et al., 2017; Boyd 

et al., 2017, Huang et al., 2017, Trugman et al., 2017; Zhang et al., 2016). To characterize earthquakes, we focus on the DAS data in the 

vertical well Delano 1OB and the events that occurred during stimulations between February 23 and March 14, 2024 (Figure 6). The DAS 

channel spacing is 2 m and the sampling rate is 1000 Hz. 

 

Figure 6: A microearthquake event (ML=1.3) during stimulation. (a) The wavefield is captured by the fiber along well 1OB. (b) 

P arrivals that are aligned by the picked arrival time. 

 

4.1 Attenuation analysis 

The observed earthquake spectra combine both the source, path, and site effects. To separate the path and site effects from the source, we 

need to analyze the attenuation structure (Chang et al., 2024). We select a few events located at the end of the well 1OB (Figure 6a). For 

each event, we use a kurtosis picker (Beyreuther et al., 2010) to pick the P arrival time and cut the waveform between -0.05 and 0.05 s 

around the arrival time (Figure 6b). We demean, detrend, taper both ends, and calculate the Fourier spectra. To enhance the signal-to-

noise ratio (SNR), we stack the spectra every 10 m (5 traces in each stack as the DAS channel separation is 2 m). Then, we divide the 

stack spectra of the P arrival between channels separated by 160 m. The resulting deconvolved spectra contain the wave propagation effect 

along the wellbore. The P-wave spectra at shallower depth experience higher spectra decay between 20 – 200 Hz associated with higher 

attenuation. 

We estimate the Quality Factor (Q) by fitting the deconvolved spectra between 20 and 200 Hz based on the travel time of waves between 

channels (Figure 7). The Q increases gradually from 20 to 200 between 200 m and 1500 m depth due to sediment compaction. The 

sediment-granite interface is likely between 1400 - 1700 m depth. Below the granite basement, the Q ranges between 50 – 700 without a 

clear trend. We will use the Q information in the source parameter analysis. 

(a)                                                                    (b) 
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Figure 7: Quality factor (Q) estimated by deconvolved P-wave spectra of four microearthquake events (ML=1.2 –1.5) that are 

located near the bottom of well 1OB. The circles are the median of four events and the error bars indicate one standard 

deviation. 

 

4.2 Source parameter analysis 

We consider modeling earthquake single spectra in this analysis. We focus on 83 events that occur between February 23 – March 14 with 

good quality picked arrival times using the kurtosis picker. We first convert the strain rate data of P arrivals (-0.05 – 0.05 s around the 

picked P arrival times) to displacement. Following Wang et al. (2018), we integrate the time series of P arrivals twice in time and multiply 

the data by the apparent velocity, estimated by the picked arrival time and the distance between channels. We only use channel numbers 

from 800 to 1000 where the SNR is consistent among events. 

We calculate the Fourier displacement spectra and resample the spectra to have equal sample spacing in the frequency domain. Then, we 

perform a point-wise quality control to discard spectral data points with SNR less than 9. We stack channels every 20 m (5 channels in 

one stack). We use a least-square approach to fit the spectral model  Ω𝑅 to the stacked displacement spectra (Error! Reference source 

not found.). In the spectral model, we use the median 𝑄𝑠𝑖𝑡𝑒 estimated in the attenuation analysis for each stack and assume 𝑡𝑠𝑖𝑡𝑒 is 10% 

of the total travel time. We fix 𝑛 = 2 to prevent parameter trade-offs (Kaneko and Shearer, 2015; Chang et al., 2025) and use the 

Boatwright model (𝛾 = 2; Boatwright, 1978). The dependent parameters are 𝑓𝑐  , 𝑄𝑝𝑎𝑡ℎ, and Ω0.  

The source radiuses estimated by the corner frequencies are between 3 and 20 m (Error! Reference source not found.). The moment 

magnitudes estimated by DAS positively correlate with the local magnitudes estimated by surface stations, suggesting the potential of 

DAS for characterizing the event magnitude (Figure 8). 

 

Figure 8: Median source radius (a) estimated by corner frequencies from the stacked displacement spectra. 

 

The majority of the events we analyze have stress drops (Δ𝜎) between 1 and 20 MPa (Figure 9a) and path-dependent attenuations (𝑄𝑝𝑎𝑡ℎ) 

of 100 – 3000. The lowest magnitude that we can resolve all source parameters is approximately -1.0, restricted by the upper bandwidth 

limit (~380 Hz).   𝑄𝑝𝑎𝑡ℎ increases with increasing source depth, which agrees with expectation. The apparent stress drops are larger for 

events with higher 𝑄𝑝𝑎𝑡ℎ in Error! Reference source not found.a, which can potentially be due to trade-offs between parameters in the 

fitting process. To reduce the trade-offs, we try fixing 𝑄𝑝𝑎𝑡ℎ = 600 and repeat the fitting process, which results in more concentrated 

stress drop estimates (between 1 and 10 MPa; Figure 9b). 



Nakata et al. 

 7 

 

                               

Figure 9: Relation between corner frequency (f_c) and moment magnitude (M_w). The solid lines indicate constant stress drops 

of 0.1, 1, 10, and 100 MPa. (a) Letting the path-dependent attenuation (Q_path) be a dependent variable. (b) Fixing Q_path 

at 600. Each dot is the median value of all DAS measurements in well 1OB for an event. The error bars indicate the 

standard deviation. fmax and fmin are the median maximum and minimum available frequency bandwidth, respectively.   

 

5. CONCLUSIONS 

This study provides a comprehensive analysis of seismicity for subsurface fracture characterization at the Cape Modern Geothermal Field, 

employing a combination of high-resolution seismic monitoring, image processing, and earthquake stress drop analysis. By integrating 

multiple seismic sensor datasets, we successfully characterize both large- and small-scale fractures that contribute to the stress state and 

permeability structure of the reservoir. 

Our results highlight the effectiveness of advanced image processing techniques in reconstructing fault surfaces, offering improved 

continuity and resolution over traditional hypocenter-based approaches. The stress drop analysis using DAS data further refines our 

understanding of small-scale fractures and their role in fluid flow dynamics. The observed correlation between depth-dependent 

attenuation (Q) and stress drop suggests a complex interplay between lithology, fault mechanics, and fluid interactions in the geothermal 

reservoir. 

These findings have significant implications for seismic hazard assessment and reservoir characterization and management in geothermal 

energy production. The methodology presented here provides a robust framework for future studies in induced seismicity monitoring and 

subsurface stress modeling, contributing to the sustainable and safe development of geothermal resources. 
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